De Novo Design of Ligand Binding

Christy Tinberg

with Sagar Khare, Jiayi Dou, Jorgen Nelson, and David Baker

RosettaCon 2012

Target: Digoxigenin

cardioactive glycoside (GSK)

Target: Digoxigenin

cardioactive glycoside (GSK)

biochemical non-radioactive labeling reagent

Target: Digoxigenin

cardioactive glycoside (GSK)

biochemical non-radioactive labeling reagent

- Large and rigid
- Relatively hydrophobic, but has 4 hydrogen bonding groups
- 3 PDB structures available (2 antibodies, 1 engineered lipocalin)
- Experimentally feasible (good positive controls; reagents are commercially available)

- Protein-ligand interaction energy
- Shape complementarity of binding site
- Pre-organization of binding site in a "bindingcompetent" conformation
 - Protein stability in the absence of ligand

w/ Sagar Khare, Jiayi Dou

Three DIG binders

Two scaffolds are homologs in the nuclear transport factor 2 (NTF2) fold-class

Rosetta Energy Function Predicts the Top Binders

Design	Scaffold	# Mutations	Sc	DIG_total_score
DIG_8	3hk4	19	0.67	-8.46
DIG_10	1z1s	10	0.59	-8.38
DIG_1	1gy7	16	0.73	-8.28
DIG_5	1z1s	11	0.68	-7.84
DIG_11	1zo2	13	0.64	-7.74
DIG_7	3gwr	13	0.67	-6.82
DIG_15	3fmz	13	0.67	-6.76
DIG_3	1pvx	12	0.69	-6.45
DIG_2	1mve	15	0.60	-6.30
DIG_4	3b4o	15	0.46	-6.02
DIG_16	3gwr	10	0.70	-5.74
DIG_14	3e5z	16	0.60	-5.73
DIG_13	2ox1	18	0.63	-5.57
DIG_6	3cu3	14	0.58	-5.42
DIG_17	3cu3	7	0.56	-4.80
DIG_9	1i60	19	0.51	-4.44
DIG_12	2owp	12	0.67	-4.24

Control Experiments Confirm Authenticity of Hits

Knockout Mutations Support the DIG_10 Binding Model

DIG binds in the intended pocket

All three H-bonding tyrosines are important for binding

Affinity Maturation Strategy

Site Saturation Mutagenesis

Amino acids within 7 Å of DIG mutated to every amino acid

3-4 permissive rounds of FACS

Combinatorial Mutagenesis

Important positions identified in SSM library combined

3-4 rounds of FACS Selection stringency increased in each round

1 (or a few) winner(s)

Two rounds of DIG_10 directed improves binding affinity on yeast

Before directed evolution (3 µM DIG-BSA label)

After directed evolution (5 pM DIG-RNase label)

Preliminary solution experiments suggest mid-nanomolar affinities for evolved variants

Evolved Variant Mutations Improve Hydrophobic Packing

Next-generation sequencing can provide us with a "binding fitness" landscape

We hope to achieve all possible single point mutations plus a random subset of intrafragment doubles

Selection Strategy for Next-gen Sequencing Libraries

All three predicted H-bonding tyrosines are optimal

Next-gen Data Suggest Avenues for Improvement

Position in protein

Finding the library "winner"

The "Winner" is a Double Mutant with Two Loop Mutations

Preliminary on-yeast experiments suggest a sub-nanomolar affinity for the evolved variant

SPR experiments also suggest high affinity in solution

 $k_{\rm on}$ and $k_{\rm off}$ both appear to be low

The "Winner" is a Double Mutant with Two Loop Mutations

Conclusions and Outlook

• Sub-nanomolar steroid binding was achieved using a combination of computation and directed evolution

- Multiple interactions are required for binding; precision is key
- A major shortcoming of the working designs was under-packing of the binding sites

• For DIG_10, higher binding affinity was obtained by altering the cavity entrance loop; might act as a lid that closes over DIG

Thanks!

David Baker

Sagar Khare Jiayi Dou Jorgen Nelson

Alberto Schena Kai Johnsson

Lindsey Doyle Barry Stoddard Synthesis of "DIG-PEG-biotin"

Crystallography

Lewis Kay - M

NMR

Selection Strategy for Next-gen Sequencing Libraries

(1 nM DIG-RNase label)

variable fragment 1:

Calculated error rates are corrected for synonomous mutations by an empirical factor

fragment 1 library

fragment 2 library

fragment 1 library

fragment 2 library

fragment 1 library

fragment 2 library

